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Abstract. We investigate the Hopf bifurcation of the synchronous chaos in coupled Lorenz oscillators. We
find that the system undergoes a phase transition along the Hopf instability of the synchronous chaos. The
phase transition makes the traveling wave component with the phase difference φ(i) − φ(i + 1) = 2π/N
between adjacent sites unstable. The phase transition also plays a role to relate the Hopf bifurcation with
the co-dimension two bifurcation of the synchronous chaos.

PACS. 05.45.Xt Synchronization; coupled oscillators – 05.45.-a Nonlinear dynamics and nonlinear
dynamical systems

1 Introduction

In recent years, synchronization in coupled chaotic oscil-
lators has been studied extensively due to its theoretical
interests and practical applications [1]. As an invariant
attractor, the instabilities of the synchronous chaos have
drawn lots of attentions. Generally, there are three types
of bifurcations associated with the synchronous chaos. The
first type is the short wave bifurcation (SWB) [2] in the
sense that its unstable spatial mode has the shortest wave-
length. SWB occurs when the diffusion coupling increases
beyond a critical value. It can be observed only in a certain
type of systems [3]. The second one is the Hopf bifurcation
that develops in asymmetrically coupled oscillators when
the gradient coupling becomes sufficiently large, causing
a pair of complex conjugate spatial modes unstable. As a
result, a traveling wave component (TWC) appears with
the synchronous chaos being its background. The Hopf bi-
furcation of the synchronous chaos was first found in cou-
pled Lorenz oscillators [3,4]. Lately this kind of bifurcation
was seen in other systems such as coupled Duffing oscil-
lators [5], coupled Rossler systems, and the coupled map
lattice [6]. The third type is the co-dimension two bifur-
cation that is evoked by decreasing the diffusion coupling
in symmetrically coupled systems where two same eigen-
modes become unstable simultaneously. Immediately after
the synchronous chaos breaks down, the partial synchro-
nization (PAS) can be observed [7]. For example, the re-
alized PAS for N = 4 is “aabc” where different alphabet
represents different dynamical state.
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Related to the Hopf and the co-dimension two bifur-
cation of the synchronous chaos, several problems are
to be addressed. First, according to the theory in ref-
erences [3,4], the Hopf bifurcation should exist in any
coupled chaotic oscillators (maps) so long as the oscilla-
tors (maps) are coupled in an asymmetrical way. Unfortu-
nately, the indicator of the Hopf bifurcation – the traveling
wave superimposed on chaotic background – cannot dis-
play in many systems. Secondly, though there are many
possible states of PAS immediately after the co-dimension
two bifurcation goes away, the number of realized is lim-
ited. As an example, the state of PAS for N = 6 is either
“adabcb” or “abbacc” even though there are totally six
possible PAS states right after the synchronous chaos be-
comes unstable [7]. Can we find a reasonable explanation
without calculating the transversal Lyapunov exponents?
Last, the Hopf and the co-dimensional two bifurcation
meet when the critical gradient coupling becomes zero.
It is intriguing to explore how the crossover from one bi-
furcation to the other happens. These are our motivations
to conduct the study in this letter.

2 The Hopf instability of synchronous chaos

The system under investigation is coupled Lorenz oscilla-
tors:





ẋ(j) = σ(y(j) − x(j))
ẏ(j) = ρx(j)−y(j) − x(j)z(j)+(ε + r)(x(j + 1)−x(j))

+(ε − r)(x(j − 1) − x(j))
ż(j) = x(j)y(j) − βz(j)

(j = 1, . . . , N),
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Fig. 1. ε = 14, r = 7.95, and N = 4 in (a)–(c). (a) the
time evolution of x(j), j = 1, . . . , 4. Roughly, the trajectories
of the four sites are the same; (b) the time evolution of x̃(j),
j = 1, . . . , 4. The wave pattern is exhibited; (c) the power
spectrum of x̃(j), which shows at around 2.6 a sharp peak.
ε = 2.5, r = 1.2, and N = 4 in (d)–(f), where the time evolution
of x(j), x̃(j), and the power spectrum of x̃(j) are shown in the
same order as in (a)–(c). The background chaos is still almost
the same for four sites, but the wave pattern does not show up
in x̃(j), instead it has a broadband power spectrum.

where the periodic boundary condition u(j) = u(j + N)
is applied on u(j) = (x(j), y(j), z(j)). The parameters
ε and r represent the diffusion and gradient couplings,
respectively. We take σ = 10, ρ = 28, and β = 1, un-
der which condition the single Lorenz oscillator is in a
chaotic state. With sufficiently large ε the synchronous
chaos u(j, t) = s(t) is stable for small r, where s(t) is the
chaotic orbit of the single Lorenz system. As r increases
over a critical value rc, a pair of complex conjugate spatial
modes become unstable and the synchronization breaks
down. Figures 1a–1c show such a case for N = 4. At
first glance, the trajectories of the four sites are the same,
while a scrutiny on their fine structures does reveal some
tiny differences. To single out the discrepancies, we calcu-
late the quantity x̃(j) = x(j) − ∑4

j=1 x(j)/4 for each site
j. The traveling wave pattern with the phase difference
∆φ = 2π/N between the adjacent sites is found in Fig-
ure 1b. The power spectrum of x̃(1) shows a sharp peak
located at the generalized rotation number of the unsta-
ble modes. The results in Figures 1a–1c show clearly the
Hopf bifurcation of the synchronous chaos. According to
the knowledge of the Hopf bifurcation for the fixed point
and periodic solution, we expect to find the indicator of
the Hopf bifurcation of the synchronous chaos, TWC su-
perimposed on the background chaos (we use this term in
the rest of the letter when the synchronous chaos is un-
stable), for arbitrary ε’s. But the finding is quite counter
to our intuition when we decrease ε. In Figures 1d–1f,
we show the results for ε = 2.5 (rc ≈ 1.2). Though the
background chaos is still almost the same for each site,

the wave structure of x̃(j) disappears. Instead, the power
spectrum of x̃(1) becomes chaotic broadband. Compar-
ing Figures 1d–1f with Figures 1a–1c, we find in Fig-
ures 1d–1f that the instantaneous period of x̃(j) fluctuates
vehemently and the phase differences between the succes-
sive sites, ∆φ’s, deviate from 2π/N .

3 The phase transition connecting the Hopf
and the co-dimension two bifurcations
of synchronous chaos

Considering the facts that the background chaos is not
exactly synchronous and the on-off intermittence occurs
from time to time [8], the background chaos should have
some noiselike effect on TWC that manifests itself by fluc-
tuations of the amplitude and the period of TWC. To
learn how the background chaos influences the dynam-
ics of TWC, it is helpful to work on the phase of x̃(j).
Before we go on, we need to give a working definition
of the phase. The one utilizing x̃(j) and ỹ(j) previously
employed in many literatures [7,9] does not work well in
this problem. We show in Figure 2a φ(2) versus φ(1) un-
der this definition with the same parameters as in Fig-
ure 1a. Theoretically, we know |φ(2) − φ(1)| = π/2 (or
3π/2) since TWC has a wavelength L = 4. Nevertheless
the results in Figure 2a do not comply with the relation.
Another definition of phase using x̃(j, t) and x̃(j, t + τ)
is widely adopted to determine the phase singularity in
the spatio-temporal system [10]. The phase is defined as
φ(j) = arctan[x̃(j, t + t′)]/x̃(j) where t′ is the time delay.
φ(2) versus φ(1) is shown in Figure 2b and they obey the
relation |φ(2)−φ(1)| = π/2 quite well except for small fluc-
tuations. Actually, a proper choice of t′ is necessary for the
measurement of the phase, otherwise the phase distorts a
lot. Some simple algebraic calculations show that the best
choice of t′ is T/4, where T is the period of x̃(j, t). Since
x̃(j, t) is modulated by the background chaos and its pe-
riod fluctuates in a certain range, t′ cannot be determined
uniquely. To lower the uncertainty, we take the average
of the phases for several T around the period that corre-
sponds to the largest peak in the power spectrum. A typ-
ical trajectory of the phase difference ∆φi,j = φ(j) − φ(i)
for i = 1 and j = 2 is plotted in Figure 2c. It fluctuates
around 3π/2 and has the same period as x̃(j, t). Corre-
spondingly, ∆φ1,3 fluctuates around π and its amplitude
is much smaller than that of ∆φ1,2 (the results are not
shown here). The power spectrum of ∆φ1,2 is shown in
Figure 2d. The peak locates at the frequency with which
x̃(j, t) oscillates. There is an unexpected finding in Fig-
ure 2d where we use the log-log scale. The low frequency
part follows a power law P (f) = fγ with the exponent
γ = −2. The same power law exists for the low frequency
part in the power spectrum of ∆φ1,3 which does not have
the apparent peak presented in that of ∆φ1,2. The power
law here indicates that the background chaos drives the
phase difference to fluctuate in a fashion of random walk
just as the white noise does [11]. It is quite interesting be-
cause the background chaos has an intrinsic structure in
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Fig. 2. ε = 14, r = 7.95. (a) φ(2) versus φ(1) by using x̃(j) and
ỹ(j) to define the phase of the site j. We have rescaled φ(j) by
π; (b) φ(2) versus φ(1) by using x̃(j, t) and x̃(j, t+ τ ) to define
the phase of the site j; (c) a typical trajectory of ∆φ1,2; (d)
the power spectrum of ∆φ1,2, which shows both a power law
in the low frequency and a large peak at the same frequency
as in Fig. 1c. The line in this plot has a slope of −2.

Fig. 3. N = 4 in (a)–(c). (a) the distribution of ∆φ1,2, which
has a sharp peak at 3π/2. Parameters are the same as in Fig-
ure 2; (b) the peak widths of ∆φ1,2 and ∆φ1,3. We have am-
plified ∆φ1,3 1000 times; (c) the peak locations of ∆φ1,2 and
of ∆φ1,3. The former shows a phase transition while the latter
freezes at π; (d) the peak width versus ε for N = 3. the inset
shows the peak location versus ε. A phase transition is also
seen in this plot.

the power spectrum while the white noise has no such a
structure.

To further investigate the effect of the background
chaos on TWC, we consider how the distribution of ∆φi,j

changes with the coupling constant ε along the onset of
the instability of the synchronous chaos. An example of
the distribution of ∆φ1,2 is presented in Figure 3a. The

center of the peak locates at 3π/2 in this plot. Usually,
for a stochastic process, the location and the width of
the peak are two quantities that describe the properties
of the underlying process. The peak width characterizes
the fluctuation strength while the peak location plays an
important role when there exists a certain phase transi-
tion. To stress the impact of the background chaos on
TWC, we first explore the peak width that is defined as
the range when the probability is half the peak value. Fig-
ure 3b shows the peak width versus the diffusive coupling
ε. For large ε the peak width is small, which in turn tells
that the impact of the background chaos is weak. With
the decrease of ε the width increases roughly in an expo-
nential way in the parameter range we investigate, which
means the smaller the diffusive coupling the stronger the
fluctuation of the phase difference induced by the back-
ground chaos. The curve becomes much steeper when ε
approaches 4.5. The plot also shows results for ∆φ1,3. The
width of ∆φ1,3 is extremely narrower than that of ∆φ1,2

and is almost a constant. A transition can be found in the
figure of the peak location of ∆φ1,2 [shown in Fig. 3c]. For
large ε, the peak locates at 3π/2. However, the state with
the peak location at 3π/2 loses its stability for small ε and
a state with a larger ∆φ1,2 appears. The lower branch of
the peak location is symmetric with respect to the up-
per one about 3π/2. The upper (lower) branch stands for
TWC where the second oscillator is lagging (leading) the
first one. The existence of the two branches is attributed
to the hopping of the system forced by the background
chaos. Both the large slope in Figure 3b and the shift of the
peak location indicate a phase transition due to the im-
pact of the background chaos on TWC, i.e., a background-
chaos-induced phase transition. Unexpectedly, we cannot
determine whether or not the transition is continuous for
N = 4 since we cannot investigate the parameter regime
around ε = 4 where an actual transition occurs. The un-
derlain fact is that there exists a periodic traveling wave
solution in this regime even when the synchronous chaos
is still stable. Any small fluctuation will bring the sys-
tem into the traveling wave solution once the synchronous
chaos loses its stability. Such a parameter regime where
the traveling wave is dominant grows with the increase of
the system size. To evade this obstacle, we investigate the
system with N = 3. The width of ∆φ1,2 is shown in Fig-
ure 3d. For large ε, the width increases with the decrease
of ε in the same way as in the system with N = 4. Af-
ter arriving at the maximum, the width decreases to zero
with the decrease of ε. The zero width is reached at rc = 0
where the oscillators are symmetrically coupled with each
other. The inset shows that the peak location changes with
ε. The transition takes place the time the maximum of the
peak width is approached. Past the transition point, the
peak location shifts from 4π/3 to π continuously. With
the help of the results for N = 3, we extend to the case
of N = 4 the conclusion that the phase transition is a
continuous process.

Figure 3c also shows the peak location for ∆φ1,3. Dif-
ferent from the one for ∆φ1,2, there is no phase transi-
tion for ∆φ1,3 implied by the shift of the peak location.
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Fig. 4. (a) the time evolution of ∆φ1,2, which jumps frequently
between π and 2π. Here ε = 0.18, r = 0.365; (b) τ versus ε. The
life time diverges when rc tends to zero.

Furthermore, in Figures 3b and 3d, the phase difference
between adjacent sites becomes 0 or π and the width also
becomes zero when ε decreases till rc goes to zero. It sug-
gests that the system forms two clusters in each of which
the sites stay in phase even if their amplitudes are not
synchronized. Actually the behaviors of ∆φ1,3 (∆φ2,4) for
N = 4 in Figures 3b and 3c tell us that ∆φ1,3 is so stable
that it has a strong resistance to the background chaos and
that the relation ∆φ1,3 = π holds regardless of the phase
transition in ∆φ1,2. The phase relation between sites 1
and 3 (sites 2 and 4) has two consequences: (1) It acts as
a barrier that prevents site 2 (site 1) from falling into the
same cluster as site 4 (site 3); (2) It is a rule responsi-
ble for the equal division of the system into two clusters.
The rule can be readily extended to any even N where the
phase difference of the sites i and i + N/2 is π. For odd
N , the system splits into two clusters which have adjacent
[N/2] and [N/2]+1 sites, respectively. We have confirmed
it by performing the simulation for N = 20 and N = 21.

The phase transition along the Hopf instability of the
synchronous chaos is the root that we cannot find the in-
dicator of the Hopf bifurcation in many coupled systems.
For example, in Figure 1d two clusters, within which the
phase difference between adjacent sites is small, are al-
ready formed so the structure of TWC cannot show up.

Noticing that the two antiphase clusters form at
rc = 0, where the Hopf and the co-dimension two bi-
furcation meet, we find that PAS “adabcb” or “abbdcc”
for N = 6 are eligible after the co-dimension two bifur-
cation. While other states such as “abcabc”, “abbacc”,
“aabaab”, and so on mentioned in [7], which cannot form
two antiphase clusters, are only possible far away from
the bifurcation point according to the discussion above.
Besides, the continuous phase transition shown in Fig-
ure 3 proves that the crossover from the Hopf to the co-
dimension two bifurcation of the synchronous chaos is a
continuous process. The phase transition induced by the
background chaos plays a critical role in this crossover, in
other words, the phase transition is a must accompanying
the continuous crossover between these bifurcations.

Finally we show how the system jumps between the

two branches in Figure 3c for small ε. Figure 4a shows a
typical trajectory of ∆φ1,2 which jumps back and forth
between the upper and the lower branches stochastically
when the state with ∆φ1,2 = 3π/2 is unstable. We define
this unstable state as the boundary that separates the two
branches, then we measure the average life time τ during
which the system stays in one branch before it jumps to
another one. τ is shown in Figure 4b and it roughly follows
a power law with the exponent around 0.63. When rc = 0,
the average life time τ goes to infinity and the system
stays in one branch forever.

4 Conclusion

In conclusion, we have investigated the Hopf bifurcation
of the synchronous chaos in coupled Lorenz oscillators.
We have found that the system undergoes a background-
chaos-induced phase transition along the Hopf instabil-
ity of the synchronous chaos. The phase transition makes
TWC with ∆φ1,2 = 2π/N between adjacent sites unsta-
ble. It is this phase transition that causes the disappear-
ance of TWC. On the other hand, the phase transition
induces the continuous crossover from the Hopf to the co-
dimension two bifurcation which is characterized by the
formation of the two antiphase clusters within which the
phase difference is zero when rc = 0.

This work was supported by the Grant No. 10405004 from
Chinese Natural Science foundation.

References

1. L.M. Pecora, T.L. Carroll, G.A. Johnson, D.J. Mar, J.F.
Heagy, Chaos 7, 520 (1997)

2. J.F. Heagy, T.L. Carroll, L.M. Pecora, Phys. Rev. Lett.
73, 3528 (1994); J.F. Heagy, L.M. Pecora, T.L. Carroll,
Phys. Rev. Lett. 74, 4185 (1995)

3. G. Hu, J. Yang, W. Liu, Phys. Rev. E 58, 4440 (1998)
4. G. Hu, J.Z. Yang, W.Q. Ma, J.H. Xiao, Phys. Rev. Lett.

81, 5314 (1998)
5. W. Ma, J. Yang, W. Liu, et al., Acta Phys. Sin. - Ch. Ed.

48, 787 (1999)
6. H.L. Yang, A.S. Pikovsky, Phys. Rev. E 60, 5474 (1999)
7. G. Hu, Y. Zhang, H.A. Cerdeira, S. Chen, Phys. Rev. Lett.

85, 3377 (2000); Y. Zhang, G. Hu, H.A. Cerdeira, S. Chen,
T. Braun, Y. Yao, Phys. Rev. E 63, 026211 (2001)

8. E. Ott, J.C. Sommerer, Phys. Lett. A 188, 39 (1994)
9. M.G. Rosenblum, A.S. Pikovsky, J. Kurths, Phys. Rev.

Lett. 78, 4193 (1997)
10. R.A. Gray, A.M. Pertsov, J. Jolife, Nature 392 (1998)
11. H. Risken, the Fokket-Planck Equation (Springer-Verlag,

1984)


